t1. Valera-Medina A, Morris S, Runyon J, Pugh DG, Marsh R, Beasley P, Hughes T, 2015. “Ammonia, Methane and Hydrogen for Gas Turbines”, Energy Procedia 75:118-123, ISSN: 1876-6102.


2. Valera-Medina A, Marsh R, Runyon J, Pugh D, Beasley P, Hughes T, Bowen P, 2016, “Ammonia–methane combustion in tangential swirl burners for gas turbine power generation” Applied Energy, DOI: 10.1016/j.apenergy.2016.02.073, ISSN: 0306-2619


3. Xiao H, Howard MS, Valera-Medina A, Dooley S, Bowen P, 2016. “A Study on Reduced Chemical Mechanisms of Ammonia/methane Combustion under Gas Turbine Conditions”, Energy and Fuels, DOI: 10.1021/acs.energyfuels.6b01556.


4. Xiao H, Howard MS, Valera-Medina A, Dooley S, Bowen P, 2017. “Reduced Chemical Mechanisms for Ammonia/methane Co-Firing for Gas Turbine Applications”, Energy Procedia 105 , pp. 1483-1488.


5. Xiao H, Valera-Medina A, Marsh R, Bowen P, 2017. “Numerical Study Assessing Various Ammonia/Methane Reaction Models for Use under Gas Turbine Conditions”, FUEL 196:344-351


6. Xiao H, Valera-Medina A, 2017. “An Evaluation of Detailed Chemical Kinetic Mechanisms for Premixed Combustion of Ammonia/Hydrogen Fuels”, ASME J for Gas Turbines and Power, DOI: 10.1115/1.4035911


7. Valera-Medina A, Pugh DG, Marsh R, Bulat G, Bowen P, 2017, “Preliminary Study of Lean Premixed combustion of Ammonia-Hydrogen for Swirling Gas Turbine Combustion”, Int J Hydrogen Energy 42(38): 24495-24503.


8. Xiao H, Howard MS, Valera-Medina A, Dooley S, Bowen P, 2017, “Reduced Chemical Mechanisms for Ammonia/Methane Co-firing for Gas Turbine Applications”, Energy Procedia, 10.1016/j/egypro.2017.03.441.


9. Xiao H, Valera-Medina A, Bowen P, 2017, “Modelling Combustion of Ammonia/Hydrogen Fuel Blends under Gas Turbine Conditions”, Energy and Fuels, 10.1021/acs.energyfuels.7b00709


10. Xiao H, Valera-Medina A, Bowen P, 2017, “Study on Premixed Combustion Characteristics of Co-firing Ammonia/Methane Fuels”, Energy, 10.1016/


11. Xiao H, Valera-Medina A, Bowen P, Dooley S, 2017, “3D Simulation of Ammonia Combustion in a Lean Premixed Swirl Burner”, Energy Procedia 142: 1294-1299.


12. Pugh D, Valera-Medina A, Giles A, Marsh T, Bowen P, 2018. “Rich humidified NH3/H2 combustion in swirl burners”, Combustion Institute 10.1016/j.proci.2018.07.091


13. Xiao H, Valera-Medina A, Bowen P, 2018. “Study on Characteristics of Co-firing Ammonia/Methane Fuels under Oxygen Enriched Combustion Conditions”, Thermal Science,


14. Honzawa, T et al. 2019 “Predictions of NO and CO emissions in ammonia/methane/air combustion by LES using a non-adiabatic flamelet generated manifold”, Energy 186:115771.


15. Valera-Medina A, Xiao H, Owen-Jones M, David B, Bowen P, 2018. “Ammonia to Power: Review”, Progress in Combustion Science and Energy 69:63-102.


16. Valera-Medina A, Xiao H, Gutesa M, Pugh D, Giles A, Bowen P, 2019. “Premixed Ammonia/Hydrogen Swirl Combustion under Rich Fuel Conditions for Gas Turbines Operation”, Int J Hydrogen Energy 44(16):8615-8626.

17. Gutesa M, Vigueras-Zuniga MO, Buffi M, Seljak T, Valera-Medina A, 2019. Fuel Rich Ammonia/Hydrogen Injection for Humidified Gas Turbines, Applied Energy 251:113334.

18. Vigueras-Zuniga et al. 2020 “Numerical Predictions of a Swirl Combustor using Complex Chemistry Fueled with Ammonia/Hydrogen Blends” Energies, 13(2), 288.

19. Xiao H, Lai S, Valera-Medina A, et al. 2020. Experimental and modeling study on ignition delay of ammonia/methane fuels, Int J Energy Research, DOI: 10.1002/er.5460.

20. Xiao, H, Lai S, Valera-Medina A, et al. 2020. Study on Counterflow Premixed Flames using High Concentration Ammonia Mixed with Methane, FUEL. DOI:

21. Elishav O, Mosotski B, Miller E, Valera-Medina A, et al. 2020. Progress and Prospective of Nitrogen-based Alternative Fuels, Chemical reviews, DOI: 10.1021/acs.chemrev.9b00538.

22. Xiao H, Lai S, Valera-Medina A, et al. 2020. Experimental and modeling study on ignition delay of ammonia/methane fuels, Int J Energy Research, DOI: 10.1002/er.5460.

23. Pugh D., et al. 2020. An Investigation of Ammonia Primary Flame Combustor Concepts for Emissions Reduction with OH*, NH2* and NH* Chemiluminescence at Elevated Conditions, Proceedings of the Combustion Institute. Doi: 10.1016/j.proci.2020.06.310

24. Pugh et al. 2020. Emissions performance of staged premixed and diffusion combustor concepts for an NH3/air flame with and without reactant humidification, ASME J Engineering for Gas Turbines and Power, accepted.

25. Gutesa-Bozo M, Mashruk S, Zitouni S, Valera-Medina A, 2020. Humidified Ammonia/Hydrogen RQL combustion in a Trigeneration Gas Turbine Cycle, Energy Conversation and Management. Accepted.


26. Mashruk S, Xiao H, Valera-Medina A, 2020. Rich-Quench-Lean model comparison for the clean use of humidified ammonia/hydrogen combustion systems, Int J Hydrogen Energy. Accepted.


27. Gutesa-Bozo M, Valera-Medina A, 2020. Prediction of Novel Humified Gas Turbine Cycle Parameters for Ammonia/Hydrogen Fuels, Energies, 13, 5749; doi: 10.3390/en13215749.



1. Valera-Medina A. Ammonia Gas Turbines, NH3 European Conference, Rotterdam, Netherlands, 2017. 

2. Gutesa M, Vigueras MO, Buffi M, Seljak T, Valera-Medina A, Humidified Ammonia/Hydrogen Gas Turbine Cycle, SDEWES East Europe, Novi Sad, Serbia, June 2018.

3. Goktepe B, Valera-Medina A, Bowen P, Ammonia-methane power generation for CO2 mitigation in Steelwork processes, EnerStock, Adana, Turkey, 2018​.

4. Valera-Medina A, et al. Progress in Ammonia Gas Turbines, European Turbine Network Int. Conference, Brussels, Berligum, 2018.

5. Valera-Medina A, Li R, He G, Qin F, Konnov AA. Reduced Chemical Kinetics for CDF Studies of Ammonia-Hydrogen Blends in Gas Turbine Swirl Combustors, Ammonia Workshop SMART CATS, Lisbon, Portugal, 2019.

6. Valera-Medina A. Ammonia as Gas Turbine Fuel, Int. Energy Agency, Combustion Committee, Nice, France, 2019. 

7. Hewlett S, Pugh D, Valera-Medina A, Bowen P. 2019. Gas Turbine Co-Firing of Steelworks Ammonia with Coke Oven Gas or Methane: A fundamental and Cycle Analysis, ASME, GT2019-91404

8. Gutesa M, Valera-Medina A. Novel Humidified Ammonia/Hydrogen Gas Turbine Cycles. SmartCATS, Naples, Italy, Feb. 2019.

9. Valera-Medina A. Ammonia for a Carbon Free Future, Clean Air, Sep. 2019.

10. Gutesa M, Valera-Medina A. Humidified Ammonia/Hydrogen Trigeneration Gas Turbine Cycles, International SDEWES 2019. 

11. Alrebei OF, Al-Doboon A, Valera-Medina A, Bowen P. CARSOXY combined with Ammonia Production for Efficient, Profitable CCS cycles, GTSJ 2019, Tokyo, Japan, 2019.  

12. Pugh D, Runyon J, Bowen P, Giles A, Goktepe B, Valera-Medina A, Marsh R, Morris S, Hewlett S. Emissions comparison of staged premixed and diffusion combustor concept with an NH3/Air flame and reactant humidification, ASME 2020, London, GT2020-14953.

13. Hewlett S, Pugh D, Bowen P, Valera-Medina A. Industrial Wastewater as an Enabler of Green Ammonia to Power via Gas Turbine Technology, ASME 2020, London, GT2020-14581.

14. Warwick-Brown D, Berge-Karevoll H, Al Abdullatif M, Valera-Medina A, Assessing the Techno-Economic Feasibility of a Wind-Tidal Lagoon Hybrid System for Green Ammonia Storage in Wales, UK, CIDSER, Veracruz, Mexico, 2020. 


15. Xiao H, He W, Lai S, Valera-Medina A, Mashruk S, Auto-ignition study on methane and ammonia fuel blends, Int. Conf. of Applied Energy, Bangkok, Thailand, 2020.


16. Valera-Medina A, Mashruk S, Xiao H, Chiong MC, Chong CT, Ammonia/Hydrogen for Zero-Carbon Gas Turbine Power, 8th Int Conference of Fluid Dynamics, Tohoku, Japan, 2020


Books and Briefings

1. Valera-Medina A, Roldan A, 2020. "Ammonia from Steelworks", Chapter in "Sustainable Ammonia", Springer.  

2. Valera-Medina A, Banares-Alcazar R, 2020. "Techno-economic Challenges of Ammonia as Energy Vector", ELSEVIER, 340pp. ISBN: 9780128205600.

3. David WF, et al. Ammonia: zero-carbon fertiliser, fuel and energy store, 2020, Royal Society Policy Briefing. Avilable Online.

  • White YouTube Icon
  • White Facebook Icon
  • White Twitter Icon
  • White Instagram Icon